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1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that is, we
shall study the boundary-value problem

¤𝑥 = 𝐽𝐻′ (𝑡, 𝑥)
𝑥(0) = 𝑥(𝑇)

with 𝐻 (𝑡, ·) a convex function of 𝑥, going to +∞ when ∥𝑥∥ → ∞.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian 𝐻 (𝑥) is autonomous.
For the sake of simplicity, we shall also assume that it is 𝐶1.

We shall first consider the question of nontriviality, within the general framework
of (𝐴∞, 𝐵∞)-subquadratic Hamiltonians. In the second subsection, we shall look into
the special case when 𝐻 is (0, 𝑏∞)-subquadratic, and we shall try to derive additional
information.
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The General Case: Nontriviality. We assume that 𝐻 is (𝐴∞, 𝐵∞)-subquadratic at
infinity, for some constant symmetric matrices 𝐴∞ and 𝐵∞, with 𝐵∞ − 𝐴∞ positive
definite. Set:

𝛾 : = smallest eigenvalue of 𝐵∞ − 𝐴∞ (1)

𝜆 : = largest negative eigenvalue of 𝐽
𝑑

𝑑𝑡
+ 𝐴∞ . (2)

Theorem 1 tells us that if 𝜆 + 𝛾 < 0, the boundary-value problem:

¤𝑥 = 𝐽𝐻′ (𝑥)
𝑥(0) = 𝑥(𝑇) (3)

has at least one solution 𝑥, which is found by minimizing the dual action functional:

𝜓(𝑢) =
∫ 𝑇

𝑜

[
1

2

(
Λ−1
𝑜 𝑢, 𝑢

)
+ 𝑁∗ (−𝑢)

]
𝑑𝑡 (4)

on the range of Λ, which is a subspace 𝑅(Λ)2
𝐿

with finite codimension. Here

𝑁 (𝑥) := 𝐻 (𝑥) − 1

2
(𝐴∞𝑥, 𝑥) (5)

is a convex function, and

𝑁 (𝑥) ≤ 1

2
((𝐵∞ − 𝐴∞) 𝑥, 𝑥) + 𝑐 ∀𝑥 . (6)

Proposition 1. Assume 𝐻′ (0) = 0 and 𝐻 (0) = 0. Set:

𝛿 := lim inf
𝑥→0

2𝑁 (𝑥) ∥𝑥∥−2 . (7)

If 𝛾 < −𝜆 < 𝛿, the solution 𝑢 is non-zero:

𝑥(𝑡) ≠ 0 ∀𝑡 . (8)

Proof. Condition (7) means that, for every 𝛿′ > 𝛿, there is some 𝜀 > 0 such that

∥𝑥∥ ≤ 𝜀 ⇒ 𝑁 (𝑥) ≤ 𝛿′

2
∥𝑥∥2 . (9)

It is an exercise in convex analysis, into which we shall not go, to show that this
implies that there is an 𝜂 > 0 such that

𝑓 ∥𝑥∥ ≤ 𝜂 ⇒ 𝑁∗ (𝑦) ≤ 1

2𝛿′
∥𝑦∥2 . (10)

Since 𝑢1 is a smooth function, we will have ∥ℎ𝑢1∥∞ ≤ 𝜂 for ℎ small enough, and
inequality (10) will hold, yielding thereby:

𝜓(ℎ𝑢1) ≤
ℎ2

2

1

𝜆
∥𝑢1∥22 +

ℎ2

2

1

𝛿′
∥𝑢1∥2 . (11)
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Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on a snow field
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If we choose 𝛿′ close enough to 𝛿, the quantity
(
1
𝜆
+ 1

𝛿′
)

will be negative, and we
end up with

𝜓(ℎ𝑢1) < 0 for ℎ ≠ 0 small . (12)

On the other hand, we check directly that 𝜓(0) = 0. This shows that 0 cannot be a
minimizer of 𝜓, not even a local one. So 𝑢 ≠ 0 and 𝑢 ≠ Λ−1

𝑜 (0) = 0. ⊓⊔

Corollary 1. Assume 𝐻 is 𝐶2 and (𝑎∞, 𝑏∞)-subquadratic at infinity. Let 𝜉1, . . . , 𝜉𝑁 be
the equilibria, that is, the solutions of 𝐻′ (𝜉) = 0. Denote by 𝜔𝑘 the smallest eigenvalue
of 𝐻′′ (𝜉𝑘), and set:

𝜔 := Min {𝜔1, . . . , 𝜔𝑘} . (13)

If:
𝑇

2𝜋
𝑏∞ < −𝐸

[
− 𝑇

2𝜋
𝑎∞

]
<

𝑇

2𝜋
𝜔 (14)

then minimization of 𝜓 yields a non-constant 𝑇-periodic solution 𝑥.

We recall once more that by the integer part 𝐸 [𝛼] of 𝛼 ∈ IR, we mean the 𝑎 ∈ 𝑍𝑍

such that 𝑎 < 𝛼 ≤ 𝑎 + 1. For instance, if we take 𝑎∞ = 0, Corollary 2 tells us that 𝑥
exists and is non-constant provided that:

𝑇

2𝜋
𝑏∞ < 1 <

𝑇

2𝜋
(15)

or
𝑇 ∈

(
2𝜋

𝜔
,
2𝜋

𝑏∞

)
. (16)

Proof. The spectrum of Λ is 2𝜋
𝑇
𝑍𝑍 + 𝑎∞. The largest negative eigenvalue 𝜆 is given by

2𝜋
𝑇
𝑘𝑜 + 𝑎∞, where

2𝜋

𝑇
𝑘𝑜 + 𝑎∞ < 0 ≤ 2𝜋

𝑇
(𝑘𝑜 + 1) + 𝑎∞ . (17)

Hence:
𝑘𝑜 = 𝐸

[
− 𝑇

2𝜋
𝑎∞

]
. (18)

The condition 𝛾 < −𝜆 < 𝛿 now becomes:

𝑏∞ − 𝑎∞ < −2𝜋

𝑇
𝑘𝑜 − 𝑎∞ < 𝜔 − 𝑎∞ (19)

which is precisely condition (14). ⊓⊔

Lemma 1. Assume that 𝐻 is 𝐶2 on IR2𝑛 \ {0} and that 𝐻′′ (𝑥) is non-degenerate for
any 𝑥 ≠ 0. Then any local minimizer 𝑥̃ of 𝜓 has minimal period 𝑇 .

Proof. We know that 𝑥̃, or 𝑥̃ + 𝜉 for some constant 𝜉 ∈ IR2𝑛, is a 𝑇-periodic solution of
the Hamiltonian system:

¤𝑥 = 𝐽𝐻′ (𝑥) . (20)

There is no loss of generality in taking 𝜉 = 0. So 𝜓(𝑥) ≥ 𝜓(𝑥̃) for all 𝑥̃ in some
neighbourhood of 𝑥 in 𝑊1,2

(
IR/𝑇𝑍𝑍; IR2𝑛

)
.
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But this index is precisely the index 𝑖𝑇 (𝑥̃) of the 𝑇-periodic solution 𝑥̃ over the
interval (0, 𝑇), as defined in Sect. 2.6. So

𝑖𝑇 (𝑥̃) = 0 . (21)

Now if 𝑥̃ has a lower period, 𝑇/𝑘 say, we would have, by Corollary 31:

𝑖𝑇 (𝑥̃) = 𝑖𝑘𝑇/𝑘 (𝑥̃) ≥ 𝑘𝑖𝑇/𝑘 (𝑥̃) + 𝑘 − 1 ≥ 𝑘 − 1 ≥ 1 . (22)

This would contradict (21), and thus cannot happen. ⊓⊔

Notes and Comments. The results in this section are a refined version of [1]; the
minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16), one
may think of a one-parameter family 𝑥𝑇 , 𝑇 ∈

(
2𝜋𝜔−1, 2𝜋𝑏−1∞

)
of periodic solutions,

𝑥𝑇 (0) = 𝑥𝑇 (𝑇), with 𝑥𝑇 going away to infinity when 𝑇 → 2𝜋𝜔−1, which is the period
of the linearized system at 0.

Table 1. This is the example table taken out of The TEXbook, p. 246

Year World population

8000 B.C. 5,000,000
50 A.D. 200,000,000

1650 A.D. 500,000,000
1945 A.D. 2,300,000,000
1980 A.D. 4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume 𝐻 (𝑡, 𝑥) is (0, 𝜀)-subquadratic at infinity for
all 𝜀 > 0, and 𝑇-periodic in 𝑡

𝐻 (𝑡, ·) is convex ∀𝑡 (23)

𝐻 (·, 𝑥) is 𝑇−periodic ∀𝑥 (24)
𝐻 (𝑡, 𝑥) ≥ 𝑛 (∥𝑥∥) with 𝑛(𝑠)𝑠−1 → ∞ as 𝑠 → ∞ (25)

∀𝜀 > 0 , ∃𝑐 : 𝐻 (𝑡, 𝑥) ≤ 𝜀

2
∥𝑥∥2 + 𝑐 . (26)

Assume also that 𝐻 is 𝐶2, and 𝐻′′ (𝑡, 𝑥) is positive definite everywhere. Then there
is a sequence 𝑥𝑘 , 𝑘 ∈ IN, of 𝑘𝑇-periodic solutions of the system

¤𝑥 = 𝐽𝐻′ (𝑡, 𝑥) (27)

such that, for every 𝑘 ∈ IN, there is some 𝑝𝑜 ∈ IN with:

𝑝 ≥ 𝑝𝑜 ⇒ 𝑥𝑝𝑘 ≠ 𝑥𝑘 . (28)

⊓⊔
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Example 1 (External forcing). Consider the system:

¤𝑥 = 𝐽𝐻′ (𝑥) + 𝑓 (𝑡) (29)

where the Hamiltonian 𝐻 is (0, 𝑏∞)-subquadratic, and the forcing term is a distribution
on the circle:

𝑓 =
𝑑

𝑑𝑡
𝐹 + 𝑓𝑜 with 𝐹 ∈ 𝐿2 (IR/𝑇𝑍𝑍; IR2𝑛) , (30)

where 𝑓𝑜 := 𝑇−1
∫ 𝑇

𝑜
𝑓 (𝑡)𝑑𝑡. For instance,

𝑓 (𝑡) =
∑︁
𝑘∈IN

𝛿𝑘𝜉 , (31)

where 𝛿𝑘 is the Dirac mass at 𝑡 = 𝑘 and 𝜉 ∈ IR2𝑛 is a constant, fits the prescription.
This means that the system ¤𝑥 = 𝐽𝐻′ (𝑥) is being excited by a series of identical shocks
at interval 𝑇 .

Definition 1. Let 𝐴∞ (𝑡) and 𝐵∞ (𝑡) be symmetric operators in IR2𝑛, depending contin-
uously on 𝑡 ∈ [0, 𝑇], such that 𝐴∞ (𝑡) ≤ 𝐵∞ (𝑡) for all 𝑡.

A Borelian function 𝐻 : [0, 𝑇] × IR2𝑛 → IR is called (𝐴∞, 𝐵∞)-subquadratic at
infinity if there exists a function 𝑁 (𝑡, 𝑥) such that:

𝐻 (𝑡, 𝑥) = 1

2
(𝐴∞ (𝑡)𝑥, 𝑥) + 𝑁 (𝑡, 𝑥) (32)

∀𝑡 , 𝑁 (𝑡, 𝑥) is convex with respect to 𝑥 (33)

𝑁 (𝑡, 𝑥) ≥ 𝑛 (∥𝑥∥) with 𝑛(𝑠)𝑠−1 → +∞ as 𝑠 → +∞ (34)

∃𝑐 ∈ IR : 𝐻 (𝑡, 𝑥) ≤ 1

2
(𝐵∞ (𝑡)𝑥, 𝑥) + 𝑐 ∀𝑥 . (35)

If 𝐴∞ (𝑡) = 𝑎∞𝐼 and 𝐵∞ (𝑡) = 𝑏∞𝐼, with 𝑎∞ ≤ 𝑏∞ ∈ IR, we shall say that 𝐻 is
(𝑎∞, 𝑏∞)-subquadratic at infinity. As an example, the function ∥𝑥∥𝛼, with 1 ≤ 𝛼 < 2, is
(0, 𝜀)-subquadratic at infinity for every 𝜀 > 0. Similarly, the Hamiltonian

𝐻 (𝑡, 𝑥) = 1

2
𝑘 ∥𝑘 ∥2 + ∥𝑥∥𝛼 (36)

is (𝑘, 𝑘 + 𝜀)-subquadratic for every 𝜀 > 0. Note that, if 𝑘 < 0, it is not convex.

Notes and Comments. The first results on subharmonics were obtained by Rabinowitz in
[5], who showed the existence of infinitely many subharmonics both in the subquadratic
and superquadratic case, with suitable growth conditions on 𝐻′. Again the duality
approach enabled Clarke and Ekeland in [2] to treat the same problem in the convex-
subquadratic case, with growth conditions on 𝐻 only.

Recently, Michalek and Tarantello (see [3] and [4]) have obtained lower bound on
the number of subharmonics of period 𝑘𝑇 , based on symmetry considerations and on
pinching estimates, as in Sect. 5.2 of this article.
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