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1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that is, we
shall study the boundary-value problem

x=JH'(t,x)
x(0) =x(T)

with H(z, ) a convex function of x, going to +co when ||x|| — oo.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(x) is autonomous.
For the sake of simplicity, we shall also assume that it is cl.

We shall first consider the question of nontriviality, within the general framework
of (A, B)-subquadratic Hamiltonians. In the second subsection, we shall look into
the special case when H is (0, b,)-subquadratic, and we shall try to derive additional
information.
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The General Case: Nontriviality. We assume that H is (A, Bo)-subquadratic at
infinity, for some constant symmetric matrices A, and B, With Bs, — Ao positive
definite. Set:

v : = smallest eigenvalue of Bo — Aco N
d
A : = largest negative eigenvalue of J pr +Ax . 2)
Theorem 1 tells us that if 2 + y < 0, the boundary-value problem:

x=JH' (x)
x(0) = x(T) &)

has at least one solution X, which is found by minimizing the dual action functional:

T
1
U(u) = / [5 (A;lu,u) + N*(—u)| dt “)
on the range of A, which is a subspace R(A)% with finite codimension. Here
1
N(x) := H(x) - 5 (Acox, x) ®)
is a convex function, and
1
N(x) < 5((B00—Am)x,x)+c Vx . 6)

Proposition 1. Assume H'(0) = 0 and H(0) = 0. Set:

& := lim inf 2N (x) Ixll =2 . (7

If y < —=A < 6, the solution u is non-zero:
x(t)#0 Vr. 8)

Proof. Condition (7) means that, for every 6’ > §, there is some & > 0 such that

!

0
Il <e=N@) << Xl . (€))

It is an exercise in convex analysis, into which we shall not go, to show that this
implies that there is an 7 > 0 such that

. 1
Fllel <n = N"(y) < 5 Iyl - (10)
Since u; is a smooth function, we will have ||hu; ||, < n for A small enough, and
inequality (10) will hold, yielding thereby:

21 o1
W (huy) < oW g3 + EWT llusll” . (11
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Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on a snow field
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If we choose 6’ close enough to §, the quantity (% + %) will be negative, and we

end up with

Y(huy) <0 for h#0 small. (12)
On the other hand, we check directly that (0) = 0. This shows that O cannot be a
minimizer of ¥, not even a local one. So # # 0 and # # A *(0) = 0. O

Corollary 1. Assume H is C? and (ac, bo)-subquadratic at infinity. Let &1, . .., €N be
the equilibria, that is, the solutions of H' (¢) = 0. Denote by wy, the smallest eigenvalue
of H"” (&1), and set:

w = Min {w1,...,wx} . (13)

If:
T

—— U

T
—be < —E
2w 2

then minimization of ¥ yields a non-constant T-periodic solution X.

We recall once more that by the integer part E[«] of @ € IR, we mean the a € Z
such that @ < @ < a + 1. For instance, if we take a., = 0, Corollary 2 tells us that x
exists and is non-constant provided that:

T T
b <1< — 15
2n =i s 2n (15
or 5 5
T e (—”, —") . (16)
w b

Proof. The spectrum of A is QT”Z + ac. The largest negative eigenvalue A is given by
22k + doo, Where

2m 2n

7k0+am<0§?(k0+1)+aoo. (17)
Hence:

T
ko = FE [——aw (18)

2

The condition y < —4 < § now becomes:
2

bm—am<—Tnk0—am<w—aw (19)
which is precisely condition (14). O

Lemma 1. Assume that H is C? on IR*" \ {0} and that H" (x) is non-degenerate for
any x # 0. Then any local minimizer X of ¥ has minimal period T.

Proof. We know that X, or X + & for some constant & € IR?", is a T-periodic solution of

the Hamiltonian system:
x=JH (x) . (20)

There is no loss of generality in taking & = 0. So ¢ (x) > () for all X in some
neighbourhood of x in W2 (R/72Z; IR*").
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But this index is precisely the index ir(x) of the T-periodic solution x over the
interval (0, T), as defined in Sect. 2.6. So

ir(X) =0. 2y

Now if x has a lower period, T'/k say, we would have, by Corollary 31:
iT(%) = ixr(X) = kippp(X)+k-12k-1>1. (22)
This would contradict (21), and thus cannot happen. |

Notes and Comments. The results in this section are a refined version of [1]; the
minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16), one
may think of a one-parameter family x7, 7 € (2rw™!, 27b}) of periodic solutions,
x7(0) = x7(T), with x7 going away to infinity when T — 27w™1, which is the period
of the linearized system at 0.

Table 1. This is the example table taken out of The TgXbook, p. 246

Year World population

8000 B.C. 5,000,000

50 A.D. 200,000,000
1650 A.D. 500,000,000
1945 A.D.  2,300,000,000
1980 A.D. 4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t,x) is (0, €)-subquadratic at infinity for
all € > 0, and T-periodic in t

H(t,-) isconvex Vit (23)

H(-,x) is T—periodic Vx 24)

H(t,x) > n(|lx|l) with n(s)s™ — 00 as s — oo (25)
Ve>0, 3¢ : H(t,x) < g||x||2+c. (26)

Assume also that H is C?, and H" (t, x) is positive definite everywhere. Then there
is a sequence xr, k € IN, of kT-periodic solutions of the system

x=JH'(t,x) 27
such that, for every k € IN, there is some p, € IN with:
P 2 Po = Xpk # Xk - (28)

O
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Example 1 (External forcing). Consider the system:
x=JH (x) + f(1) 29)

where the Hamiltonian H is (0, b, )-subquadratic, and the forcing term is a distribution
on the circle:

d
f= i f, with FelL?(R/TZ;R*) , (30)
where f, :=T"! foT f(t)dt. For instance,

F = 8k, (31)

kelN

where 6y is the Dirac mass at = k and ¢ € IR?" is a constant, fits the prescription.
This means that the system x = JH’(x) is being excited by a series of identical shocks
atinterval T'.

Definition 1. Let A (1) and By (1) be symmetric operators in R*", depending contin-
uously ont € [0,T], such that As(t) < B (1) for all 1.

A Borelian function H : [0,T] x R?*" — TR is called (Aco, Bo)-subquadratic at
infinity if there exists a function N (t,x) such that:

1
H(tvx) = i(AOO(Z)x’x)J'-N(t’x) (32)
Vt, N(t,x) isconvex with respectto x (33)
N(t,x) = n(||x|l) with n(s)s™! — +00 as s — +oo0 (34)
1
dceR : H(t,x) < 3 (Bo(t)x,x)+c Vx. (35)

If A(t) = acl and B (t) = bool, with aes < bo € IR, we shall say that H is
(Ao, boo)-subgquadratic at infinity. As an example, the function ||x||%, with1 < a < 2, is
(0, &)-subquadratic at infinity for every € > 0. Similarly, the Hamiltonian

1
H(t,x) = Sk Ikl + [l (36)
is (k, k + &)-subquadratic for every € > 0. Note that, if k < 0, it is not convex.

Notes and Comments. The first results on subharmonics were obtained by Rabinowitz in
[51, who showed the existence of infinitely many subharmonics both in the subquadratic
and superquadratic case, with suitable growth conditions on H’. Again the duality
approach enabled Clarke and Ekeland in [2] to treat the same problem in the convex-
subquadratic case, with growth conditions on H only.

Recently, Michalek and Tarantello (see [3] and [4]) have obtained lower bound on
the number of subharmonics of period kT, based on symmetry considerations and on
pinching estimates, as in Sect. 5.2 of this article.
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